Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Gu-Ping Tang ${ }^{\text {a* }}$ and Jian-Ming $G u^{b}$

${ }^{\text {a }}$ College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China, and ${ }^{\mathbf{b}}$ Center of Analysis and Measurement, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China

Correspondence e-mail:
tangguping@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.063$
$w R$ factor $=0.203$
Data-to-parameter ratio $=16.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2-[3-(2-Cyano-2-propyl)-5-(1,2,4-triazol-1-yl)-phenyl]-2-methylpropiononitrile

In the title compound, $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{5}$, the almost ideally planar triazole ring forms a dihedral angle of $75.1(1)^{\circ}$ with the benzene ring. There are intermolecular $\pi-\pi$ interactions.

Received 16 June 2005 Accepted 27 June 2005 Online 6 July 2005

Comment

The title compound, (I), an aromatase inhibitor, has been shown to be useful in second-line therapy of estrogendependent breast cancer and has recently been approved as first-line therapy in several countries (Goss \& Strasser, 2001). In this paper, we report the crystal structure of (I). The bond lengths and bond angles are in agreement with those reported for other 1,2,4-triazole derivatives (Chinnakali et al., 1999; Mazur et al., 2004) and are within the expected ranges. The almost ideally planar triazole ring forms a dihedral angle of 75.1 (1) ${ }^{\circ}$ with the benzene ring (Fig. 1). Atom C7 is coplanar with the triazole ring. In the crystal structure (Fig. 2), a $\pi-\pi$ interaction is observed between the benzene ring and the symmetry-related ring at $\left(1-x, y, \frac{3}{2}-z\right)$; the distance between the centroids of the benzene rings is $3.995 \AA$.

(I)

Experimental

Compound (I) was a gift from Linhai Dongdog Chemical Factory. Crystals were grown from an acetone solution by slow evaporation at room temperature.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{5}$	$D_{x}=1.196 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=293.37$	Mo $K \alpha$ radiation
Monoclinic, $C 2 / c$	Cell parameters from 10339
$a=17.9107(8) \AA$	reflections
$b=11.2522(3) \AA$	$\theta=2.2-27.5^{\circ}$
$c=18.9011(7) \AA$	$\mu=0.08 \mathrm{~mm}^{-1}$
$\beta=121.181(1)^{\circ} \AA^{\circ}$	$T=295(1) \mathrm{K}$
$V=3258.9(2) \AA^{3}$	Prism, colorless
$Z=8$	$0.45 \times 0.45 \times 0.20 \mathrm{~mm}$

Figure 1
Molecular structure of (I), showing 30\% probability displacement ellipsoids.

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: none 16052 measured reflections 3748 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.203$
$S=1.00$
3197 reflections 200 parameters
H -atom parameters constrained

2348 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-23 \rightarrow 23$
$k=-14 \rightarrow 14$
$l=-23 \rightarrow 24$
$w=1 /\left[0.0057 F_{\mathrm{o}}{ }^{2}+\sigma\left(F_{\mathrm{o}}{ }^{2}\right)\right] /\left(4 F_{\mathrm{o}}{ }^{2}\right)$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.37 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.37 \mathrm{e}^{-3}$
Extinction correction: Larson (1970)

Extinction coefficient: $1.8(6) \times 10^{2}$

Figure 2
Packing arrangement for (I). H atoms have been omitted for clarity.

The high-angle reflections $\left(2 \theta>52^{\circ}\right)$ were not used in the refinement, because they were weak. H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$, and included in the refinement in a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atom).

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

References

Altomare, A., Burla, M., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Chinnakali, K., Fun, H. K., Senthivelan, A., Sriraghvan, K. \& Ramakrishnan, V. T. (1999). Acta Cryst. C55, 1136-1138.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Goss, P. E. \& Strasser, K. (2001). J. Clin. Oncol. 19, 881-883.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, pp. 291-294. Copenhagen: Munksgaard.
Mazur, L., Koziola, A. E. \& Modzelewska-Banachiewicz, B. (2004). Acta Cryst. E60, o2244-o2246.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
Rigaku/MSC (2004). CrystalStructure. Version 3.60. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

